
Column-Oriented Datalog on the GPU

Yihao Sun1, Sidharth Kumar2, Thomas Gilray3, Kristopher Micinski1

1Syracuse University
2University of Illinois at Chicago

3Washington State University
{ysun67, kkmicins}@syr.edu, sidharth@uic.edu, thomas.gilray@wsu.edu

Abstract
Datalog is a logic programming language widely used in
knowledge representation and reasoning (KRR), program
analysis, and social media mining due to its expressiveness
and high performance. Traditionally, Datalog engines use ei-
ther row-oriented or column-oriented storage. Engines like
VLog and Nemo favor column-oriented storage for efficiency
on limited-resource machines, while row-oriented engines
like Souffé use advanced data structures with locking to per-
form better on multi-core CPUs. The advent of modern dat-
acenter GPUs, such as the NVIDIA H100 with its ability to
run over 16k threads simultaneously and high memory band-
width, has reopened the debate on which storage layout is
more effective. This paper presents the first column-oriented
Datalog engines tailored to the strengths of modern GPUs.
We present FVLOG, a CUDA-based Datalog runtime library
with a column-oriented GPU datastructure that supports all
necessary relational algebra operations. Our results demon-
strate over 200× performance gains over SOTA CPU-based
column-oriented Datalog engines and a 2.5× speedup over
GPU Datalog engines in various workloads, including KRR.

Introduction
Datalog (Abiteboul, Hull, and Vianu 1995) has become
a de-facto standard for reasoning across a breadth of
fields, including deductive databases (Sáenz-Pérez, Ca-
ballero, and Garcı́a-Ruiz 2011), program analysis (Braven-
boer and Smaragdakis 2009), business analytics (Aref et al.
2015a), and knowledge representation (Nenov et al. 2015).
For example, popular applications of RDF, such as OWL 2
RL ontologies (Motik et al. 2019) with SWRL rules (Hor-
rocks et al. 2004), are easily transliterated into Datalog rules.
A Datalog engine then executes these rules to a fixed point,
materializing a database for subsequent querying. While
early systems such as OWLIM (Kolovski, Wu, and Eadon
2010) and WebPIE (Urbani et al. 2010) were challenged by
slow performance, modern Datalog engines enable scaling
useful queries to internet-scale datasets (Ajileye and Motik
2022).

High-performance Datalog engines such as RD-
Fox (Motik et al. 2014) and Soufflé (Jordan, Scholz,
and Subotić 2016) are typically designed for CPU-
based hardware, storing tuples in row-based format with

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

minimally-locking data structures such as B-Trees and tries
(Jordan et al. 2019a,b). However, row-based storage can
face scalability challenges on modern CPUs, especially
those with multiple Core Chiplet Dies (CCDs) that do not
share caches. Accessing entire rows can lead to suboptimal
cache alignment and increased memory access latency,
particularly for tasks such as joins and indexing, which
frequently access only a subset of columns. Additionally,
these systems are not entirely lock-free, which can further
limit scalability as core counts increase. Our benchmarks
show that both engines’ performance saturates at 32 cores
and declines rapidly when scaling up to 64 cores.

Some CPU-based in-memory Datalog reasoners, such
as VLog and Nemo (Urbani, Jacobs, and Krötzsch 2016;
Ivliev et al. 2023), adopt a column-oriented tuple represen-
tation (Abadi, Madden, and Hachem 2008) along with com-
pression techniques such as run-length encoding (Robin-
son and Cherry 1967). On CPU-based systems, the column-
oriented approach trades space for time, enabling these en-
gines to run on machines with limited RAM.

However, the performance claim between these two stor-
age layouts shifts with the emergence of new hardware,
particularly datacenter GPUs. These SIMD-like superchips,
such as the NVIDIA H100, can execute more than 16 k
threads simultaneously and are supported by 96 GB of high-
bandwidth memory (HBM) (JEDEC 2021), and have signif-
icant potential to accelerate data-intensive workloads. Such
massively parallel systems demand higher memory locality
and fully lock-free code, making it challenging to migrate
existing row-oriented Datalog engines to this hardware. In
contrast, the column-oriented storage layout, with its smaller
tuple size, naturally fits the SIMD architecture. This lay-
out has already proven to be more cache-friendly and of-
fers better memory locality for SIMD-enhanced CPU-based
systems, as demonstrated in the database community (Ail-
amaki et al. 1999; Zukowski, Nes, and Boncz 2008), and
is widely used in high-performance OLAP databases such
as DuckDB (Raasveldt and Mühleisen 2019) and MonetD-
B/X100 (Boncz, Zukowski, and Nes 2005).

Due to the data-intensive nature of Datalog and the sim-
ilarities between GPUs and SIMD processors, we believe
that column-oriented storage could be a better fit for mod-
ern datacenter GPUs. In this paper, we present FVLOG, a
column-oriented Datalog Engine backend designed for mod-

ern GPUs. Our contributions are as follows.

• We present the first-ever column-oriented relation-
backing representation for GPU-based Datalog engines.

• We implement FVLOG, a CUDA-based GPU Datalog
runtime library that supports efficient join, copy, dedu-
plication, fixpoint computation, and other primitive op-
erations for modern high-performance Datalog engines.

• We perform a thorough evaluation. Our results show
over 200× speedup compared to CPU-based column-
oriented systems and 2.5× faster performance than other
GPU prototypes in both standard Datalog and knowledge
graph reasoning workloads.

Preliminaries
Datalog and RDF Datalog restricts Prolog’s to positive
Horn clauses.It consists of a set of clauses in the form
H ← B1, ..., Bn, where the head H is derived if all body
clauses B1..n are satisfied. A Datalog engine infers new
facts (materializing an Intensional Database, IDB) from the
rules and ground facts (also called the Extensional Database,
EDB) provided as input. For example, transitive closure can
be represented in following rules:

Reach(x, y) ← Edge(x, y).
Reach(x, z) ← Edge(x, y),Reach(y, z).

Datalog is chain-forward, recursively evaluating all rules
to infer all possible facts until reaching a fixed point. One
compelling application of Datalog is in materializing RDF
knowledge graphs. RDF is a powerful framework for rep-
resenting information about resources in the form of a di-
rected, labeled graph. Edges in a knowledge graph may be
represented via RDF triples using a predicate that relates two
objects; for example, a knowledge graph for a family rela-
tionship may be represented as:

< Alice :parentOf Bob >
< Larry :parentOf Alice >

One straightforward way to solve RDF reasoning problem
in Datalog is by encoding the RDF triples as binary relation
facts, then run recursive Datalog queries on it to material-
ize all information can be derived from the RDF graph. For
example, above RDF triples can be encoded in Datalog as:

parentOf (Alice , Bob)
parentOf (Larry , Alice)

Following transitive closure like Datalog rules can be used
to materialize the ancestor relationship in the family graph:

ancestor(x, y) ← parentOf(x, y).
ancestor(x, z) ← parentOf(x, y), ancestor(y, z).

After above program reach the fixed point, the ancestor re-
lation will contain all ancestor relationship in the family
graph, we can directly query the ancestor to get the result.

From To
3 3
1 4
… …
7 3

ID To
0 3
1 4
… …
8 3

NSM

ID From
0 3
1 1
… …
8 7

DSM
Edge Edgefrom Edgeto

Figure 1: Converting Edge relation from NSM to DSM.

Decomposed Storage Model (DSM) Database records
are traditionally stored as rows of n-ary tuples in a horizon-
tal layout known as the N-ary Storage Model (NSM). Even
today, most database management systems (DBMS) utilize
NSM. However, some research demonstrated that storing
database records via vertical columns could offer better per-
formance (Weyl et al. 1975). This approach inspired the De-
composed Storage Model (DSM). Figure 1 shows an exam-
ple of converting a NSM relation to DSM. An Edge relation
is broken into two binary relations: Edgefrom and Edgeto.
Each of these binary relations includes an additional ID col-
umn that stores the original row number. For instance, the
second row of the original relation, (1, 4), is decomposed
into (1, 1) in Edgefrom and (1, 4) in Edgeto. This ID col-
umn, also known as the surrogate column, is essential for
reconstructing the entire relation during join operations. For-
mally, a n-ary relation R(x0, ..., xn) is decomposed to:

R0(id, x0), R1(id, x1), ..., Rn(id, xn)

In the DSM model, accessing all values in the same column
becomes straightforward—one simply needs to access each
decomposed column relation. If the entire row is required,
a join operation can be performed to combine the columns
using the surrogate column. An n-ary DSM relation’s row
can be reconstructed as follows:

Π ̸=id(R0 ▷◁id R1 ▷◁id ... ▷◁id Rn)

Transposing data into DSM facilitates vectorization, allow-
ing multiple tuples to be processed in parallel, and improves
cache efficiency with smaller tuple sizes (Ailamaki et al.
2001). These benefits are similar to those achieved by con-
verting an Array of Structures (AoS) into a Structure of
Arrays (SoA) in GPGPU programming (Pennycook et al.
2013). SoA is considered as the best practice for GPUs
due to the enhanced memory coalescing and cache perfor-
mance (NVIDIA 2024a). Given these advantages, recent
surveys suggest that DSM could also enhance performance
in GPU-based databases (Zeng et al. 2023), applying the
same principles that benefit GPU workloads to DBMS.

While the DSM model offers excellent read performance,
it often increases memory overhead due to the additional
id column in each binary relation. Modern DSM-based
databases, such as MonetDB/X100 (Boncz, Zukowski, and
Nes 2005) and C-Store (Stonebraker et al. 2018), mitigate
this overhead by storing tuples in lexicographic order and
employing column compression techniques . However, the
separation of each row’s storage and the associated datas-
tructure overhead make the write operation more expensive.

3 1 1 3 1 3 7 7

2 4 2 9 9 1 0 2Raw data

Colum
n 2 6 5 0 2 7 1 3 4

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Sorted
Indices

Start : 0
Len : 1

Start : 1
Len : 1

Start : 2
Len : 3

Start : 5
Len : 1

Start : 6
Len : 2

0 1 2 4 9Unique
Value

Raw data

Colum
n 1 1 2 4 0 3 5 6 7Sorted

Indices

Start : 0
Len : 3

Start : 4
Len : 3

Start : 6
Len : 2

1 3 7Unique
Value

Indices

Indices

Hash

Hash

Figure 2: Reach stored in column-oriented layout on GPU.

This overhead is particularly problematic in Datalog, where
the materialized IDB is often orders-of-magnitude larger
than the input EDB.

Column-Oriented Relations on the GPU
In our approach, relations are stored using the DSM, where
each relation is decomposed into columns, and each column
shares an identical datastructure. Figure 2 illustrates our ap-
proach, particularized to the case of 2-ary relation. The col-
umn datastructure consists of three main components: a raw
data array, sorted indices, and a unique hashmap. The bot-
tom of each column in Figure 2 shows the raw data array,
which stores the actual data of the relation in 32-bit integers
ordered by logical tuple insertion time. A benefit of decom-
posing raw tuple rows into separate columns is that doing so
facilitates aligned access on modern GPUs; GPU cores are
typically 32-bit computation units organized into warps. To
maximize parallel performance, all GPU threads in the same
warp must execute the same instruction and access memory
in a coalesced manner, with each thread accessing consecu-
tive memory addresses (NVIDIA 2024b). When data is or-
ganized in a row-oriented manner, any relation with more
than one attribute would exceed the size of a 32-bit inte-
ger, causing each GPU core to access non-consecutive mem-
ory addresses when processing data in the same column.
These misaligned accesses significantly degrade throughput.
By contrast, using column-oriented storage ensures that each
column is stored in consecutive memory addresses, facilitat-
ing aligned access and aiding throughput.

The middle section of each column in Figure 2 represents
the sorted indices, aligned with the surrogate column in the
DSM model. Each element in this array is an offset into the
raw data array, ordered by the values in that data. For in-
stance, in column 2 of Figure 2, the 0th value in the sorted
indices is 6, pointing to the 6th element in the raw data
array, which is 0—the smallest value in this column. This

sorted index acts as a database index, allowing quick loca-
tion of corresponding value ranges during join operations,
thus avoiding a full scan of the raw data array.

Pure binary search-based join operations on sorted indices
can be inefficient on GPUs due to in-warp thread divergence
caused by heavy conditional branching. To address this, we
use a hybrid indexing approach that combines sorted indices
with a unique hashmap at the top of each column in Figure 2.
This design further enhances the efficiency of join opera-
tions. This hashmap stores run-length encoded values from
the columns, with each unique value as a key. The hashmap
value is a pair comprising the starting offset in the sorted
indices and the count of occurrences. For example, in col-
umn 1 of Figure 2, the value 1 appears three times in the raw
data array, starting at the 0th element in the sorted indices,
so the hashmap stores the pair (0, 3) for the key 1. This index
structure enables fast hash joins and increases throughput.

We avoid using a pure hashmap for indexing because, un-
like CPU, GPU hashmaps typically use linear probing and
open addressing to resolve hash collisions. This approach, as
seen in popular implementations such as cuCollection (cu-
Collection 2024), optimizes cache performance by ensuring
continuous memory allocation. In Datalog, columns often
contain many repeated values, leading to frequent hash col-
lisions and degraded performance. Our benchmarks against
GPUJoin (Shovon et al. 2023) demonstrate that our dupli-
cated eliminated hybrid indexing approach is more efficient
for real-world Datalog workloads.

Although our approach is inspired by the CPU-based
column-oriented reasoner VLog, our design makes several
important departures to optimize performance on modern
GPUs, which we now describe.

Continuous Memory Layout To avoid re-evaluating
known facts during fixpoint computation, Datalog imple-
mentations often adopt the semi-naı”ve evaluation. This
method optimizes computation by managing each relation in
three versions: full (all tuples), delta (tuples from the most
recent iteration), and new (tuples generated in the current
iteration), focusing on delta facts to streamline the process.
However, this algorithm requires a write-intensive merge op-
eration between delta and full in each iteration.

Due to the costly write operations associated with DSM
relations, Datalog systems such as VLog avoid merging the
delta generated in each iteration into the full relation. In-
stead, each datastructure object contains only the tuples gen-
erated within the same iteration. All relational algebra oper-
ations on the full relation are broken down into a series of
operations on the delta in each iteration. While this design
saves time during insertion, it introduces sequential over-
head. When the number of iterations is low, this overhead is
manageable on CPU-based systems. However, in real-world
Datalog recursive queries, such as transitive closure on large
graphs, hundreds of iterations are common. Excessive itera-
tions cause the fragmented full relation to be scattered across
memory, leading to poor memory locality and cache perfor-
mance, which significantly increases overhead during joins.

The mitigating solution used by VLog involves on-
demand concatenation to construct index during join opera-

tions. However, this approach remains unsuitable for GPUs.
First, while on-demand concatenation helps reduce overhead
during joins, it does not address the need to deduplicate new
relation data with the fragmented full relation during semi-
naı̈ve evaluation. Second, this approach introduces memory
management overhead due to the frequent, large memory al-
locations and deallocations required for temporary consoli-
dated data structures in each iteration.

To address these challenges and better align with GPU ar-
chitecture, we take the opposite approach. Instead of avoid-
ing the overhead of data insertion, we accept it to maintain
continuity in the raw data. This continuity ensures better
data locality and cache performance, enabling more effec-
tive parallelism across the entire Datalog evaluation process.
Moreover, due to the high memory bandwidth of GPUs, the
parallel insertion of delta tuples into the full relation is not
as expensive as on CPUs. Time-consuming operations such
as sorting, scanning, and hash table construction can be effi-
ciently parallelized (Satish et al. 2010; Green, McColl, and
Bader 2012; Green 2021). Therefore, in FVLOG, we eagerly
merge all delta tuples into the full relation to maintain the
memory continuity and ensure better data locality.

Uncompressed Raw Data To save memory bandwidth,
CPU-based column-oriented database systems use RLE
compression on the raw data array. These systems are typi-
cally optimized for CPU in-memory processing. In contrast,
we target datacenter GPUs, which offer large VRAM ca-
pacities of up to 192 GB, making raw column compression
less beneficial. Thus, we compress only the indices and not
the raw data. This approach avoids the overhead of decom-
pressing raw data during parallel relational algebra opera-
tions such as joins and copies—wherein thousands of GPU
threads need to iterate over raw tuples simultaneously—and
maximizing parallelism and memory bandwidth of the GPU.

Schedule multiple rules per iteration VLog employs a
one-rule-per-step variant of semi-naı̈ve evaluation, where
in each iteration, only one rule is applied. In this setup,
if two Datalog rules contribute to the same relation in the
same iteration–for example, in transitive closure, where both
rules could contribute to the Reach–it results in two separate
merge operations. In contrast, the original semi-naı̈ve eval-
uation would have both rules contribute to the same relation
simultaneously, requiring only a single merge. This is not a
proper design for GPUs. In FVLOG, we adopt the original
semi-naı̈ve evaluation design.

Relational Algebra Operators
There are multiple ways to implement Datalog queries, such
as using Binary Decision Diagrams (BDD) (Whaley and
Lam 2004), SMT solvers (Hoder, Bjørner, and De Moura
2011), and Answer Set Programming (ASP) (Calimeri et al.
2017). However, state-of-the-art high-performance Datalog
engines such as Soufflé (Aref et al. 2015b) achieve their
high throughput via relational algebra kernels (Ceri, Gott-
lob, and Lavazza 1986). In this approach, a Datalog query
is translated into a series of extended positive relational al-
gebra (RA+) (Ullman 1983) operations, including join (▷◁),

selection (σ), projection (Π), and set union (∪), along with
an extended closure operator (O), which computes the fix-
point. For example, to compute the transitive closure query,
we can use the followingRA+ expression:

Reach = O(Πx,z(Edge ▷◁y Reach) ∪ Reach)

We now discuss the implementation of theseRA+ opera-
tions in a column-oriented fashion optimized for GPUs.

Projection and Selection In FVLOG, the projection oper-
ator processes only surrogate columns instead of entire rows.
The selection operator operates directly on the raw data ar-
ray of the targeted column. Both RA operators can be imple-
mented efficiently using NVIDIA’s CCCL library.

Algorithm 1: Binary Join on hash indexed DSM relations

1: Input: RA, RB are two DSM relations columns
2: Output: the result of join stored in RC

3: ranges, matchedA ← allocate(size of RA)
4: for c in RA, x is id of c parallel do
5: if RB .hashmap[c] then
6: ranges[x]← RB .hashmap[c]
7: matchedA[x]← x
8: else
9: ranges[x]← (∅, ∅)

10: matchedA[x]← ∅
11: end if
12: end for
13: filter out empty position in ranges and matchedA
14: total size← parallel sum sizes of all ranges
15: RC ← parallel allocate(total size)
16: pos buf← exclusive scan(size of each ranges)
17: for n from 0 to R C.size - 1 parallel do
18: upper bound←

j + 1 ≤ pos buf.size ? pos buf[j + 1] : total size
19: find j such that pos buf[j] ≤ n < pos buf[j + 1]
20: Aid ← matchedA[j]
21: Bid ← RB .sorted id[ranges[j].start +

(n - pos buf[j])]
22: write (Aid, Bid) to RC[n]
23: end for

Join Unlike the typical join operator in traditional row-
oriented databases, we do not materialize the full join re-
sult within the join operator itself. Instead, we only return
the matched surrogate columns of the join candidate rela-
tions. Join results are materialized only during a projection
operation when the result columns are actually needed. This
approach helps avoid unnecessary memory allocation for the
full join result, saving both memory and computation time.

Algorithm 1 shows the implementation of join. The en-
tire join can be divided into two main phases: computing
join size (line 3 to line 16) and writing join results (line 17
to line 23). The first phase of the join process is illustrated
in the left half of Figure 3. In this phase, each GPU thread
parallelly iterates over the data column of the decomposed
Reachy (RA in the algorithm). For each value, the thread
queries the hashmap of Edgey (RB in the algorithm) to find

the matched surrogate values and the corresponding tuple
ID ranges that share the same raw data value. Some values
in Reachy may not have a match in Edgey—for example, the
bottom “7” in the Figure 3. In such cases, these unmatched
values are filtered out by a filter function in line 16 of the al-
gorithm. Next, by applying a parallel reduce function (line
14 of the algorithm) on the lengths of the matched ranges
(indicated in red in the Figure 3), we compute the total num-
ber of join results, which in this case is 12. We then allocate
memory for the results based on this computed size. Sepa-
rating the join size computation phase from the result writ-
ing phase, rather than performing everything in a single loop
(as is common in CPU-based engines), allows us to allocate
memory for the join results in advance , which enables each
thread to write to the join result without any lock contention.

There are two ways to collect the join result after com-
puting the matched ranges. The first method involves par-
allel iteration over all matched ranges, where each thread
writes a different number of tuples depending on the length
of each range, which can cause data skew. For example, in
Figure 3, the first matched range has a length of 3, while
the second has only 1. The second method involves divid-
ing the workload based on the output result, ensuring that
each thread writes the same number of tuples, thereby avoid-
ing data skew. However, this method requires extra searches
within each thread to find the corresponding matched range,
therefore most of CPU-based engines usually prefer the first
method. However, most GPU algorithms favor the second
style because reducing thread divergence improves perfor-
mance when the thread count is large. In our implementa-
tion, we chose the second method for writing the join result.

We begin the second phase by performing a parallel ex-
clusive prefix sum (line 16) on the lengths of each range
identified in the previous phase to generate a result offset
buffer, where each element represents the starting position
in the result. These computed positions are marked in green
in Figure 3. For example, nothing precedes the first range, so
it has a result offset of “0”. The third range has two preced-
ing ranges with sizes of 3 and 1, so the resulting offset for the
third range is 4. Then, we parallel iterate over all positions in
the proclaimed result memory. Within each thread, a sequen-
tial search (which can be accelerated by binary search) iden-
tifies the corresponding matched position in the ranges, and
the join result is written to the output buffer. For instance,
thread 2 processes position number 2 in the result; by per-
forming a binary search on the green buffer computed ear-
lier, it determines that position 2 is between 0 and 3, match-
ing the first range, which corresponds to the second to fifth
values in the ID column of Edgey . According to lines 19 and
20 in the algorithm, we compute that Reach ID 0 and Edge
ID 2 should be written to the result buffer.

Union and Deduplication Implementing set union be-
comes more complex in DSM because the deduplication
process during a join typically requires simultaneous access
to entire rows. To effectively handle deduplication, we fur-
ther extend RA+ with the difference (−) operator, which
removes tuples from the left relation that have a matching
tuple on the right. This extension allows us to efficiently

Value : (0,1)
Key : 0

Value : (1,1)
Key : 1

Value : (2,3)
Key : 3

Value : (5,1)
Key : 4

Value : (2,3)
Key : 2

3

1

1

3

1

3

7

7

Edgey Reachy⋈

unmatched

unmatched

After Filter, 
Exclusive Scan, 

Reduce

12 matched 
in total

0 0
0 2
0 7
1 5
2 5
3 0
3 2
3 7
4 5
5 0
5 2
6 7

T0
T1
T2
T3
T4
T5
T6

T9

T7
T8

T10
T11

Reachid EdgeidThreadsT0
T1
T2
T3
T4
T5
T6
T7

Threads
Result

0 2 3

1 1 1

2 1 1

3 2 3

4 1 1

5 2 3

6

7

Reachid start len
Edgeid

0 2 0

1 1 3

2 1 4

3 2 5

4 1 8

5 2 9

6

5

0

2

7

1

3

4

id

Figure 3: Example of Reach ▷◁y Edge paralleled on GPU.

manage deduplication. For example, the join operation in the
transitive closure can be translated as:

New = Edge1 ▷◁y Reach0
∆ = New− (New ▷◁x Reach0 ▷◁id,y Reach1)
Reach0,1 = O (Πx(∆) ∪ Reach0,Πy(∆) ∪ Reach1)

Note that although we use the symbol ∪ here since the tuples
have already been deduplicated, the set union operation is
effectively a simple concatenation.

The join pattern revealed in this approach aligns with
the classic triangle join problem, where three relations
are joined to form a cycle. The complexity of evaluating
such joins is tied to the AGM (Algebraic Graph Model)
bound (Atserias, Grohe, and Marx 2013), which provides
a worst-case estimate of the size of join results based on the
sizes of the input relations. The AGM bound suggests that
when data skew is present, any conventional binary join plan
can become prohibitively expensive–a significant challenge
for Datalog engines that rely on such plans. To illustrate this,
consider the join within a deduplication process, which can
be expressed in Horn Clause as follows:

Dedup(x, y)← New(x, y),Reach0(id, x),Reach1(id, y)

Here, New represents the new tuples generated from the join
between Reach and Edge. x, y, id form a join circle.

A classic solution is to use a trie-based join algorithm,
such as Leapfrog Triejoin (LFTJ) (Veldhuizen 2014), widely
used in CPU-based Datalog engines such as LogicBlox.
However, LFTJ is unsuitable for GPUs because its Leapfrog
search step is inherently sequential. Some other solutions
such as generic join (Ngo, Ré, and Rudra 2014) and its
column-oriented variant free join (Wang, Willsey, and Su-
ciu 2023) have been proposed to address the triangle join
problem in the context of traditional CPU-based databases.
However, the recursive nature of free join makes it particu-
larly challenging to implement on GPU.

Therefore, we take a different approach to handling tri-
angle joins during deduplication. Instead of using tries, we
tailor the process to our GPU-friendly datastructure. The de-
tails are presented in Algorithm 2. For simplicity, we demon-
strate the deduplication process for a 2-arity relation, though
the same approach can be extended to n-arity relations.

Algorithm 2 begins by computing the normal hash join
between New and all the other columns in the full relation

Algorithm 2: Deduplication in FVLOG for a 2-arity relation

1: Input: New(x, y), S(id, x), T(id, y) are input relations
2: Output: Q is bitmap for matched New
3: for a in Newx parallel do
4: if S.hashmap[a] then
5: rangex← S.hashmap[a]
6: else
7: rangex← (∅,∅)
8: end if
9: end for

10: matchid = range(R.size)
11: do the same for Newy and T generate rangey
12: remove i from matchid if either range is empty
13: for i in matchid parallel do
14: if rangex[i] and rangey[i] are overlapped, Q[i]=true
15: end for

(the S and T in the algorithm). Before joining surrogate
columns (lines 10-12), tuples with empty matched surrogate
column ranges are marked for early elimination, reducing
unnecessary computation. To prevent thread divergence and
warp serialization, especially in the presence of data skew,
the two join operations are separated into distinct parallel
loops. After marking tuples (lines 13-15), another parallel
loop efficiently checks for matches in the surrogate column.

While this approach may be less efficient in terms of
memory usage compared with a solution like LFTJ, as it re-
quires additional buffers equivalent in size to the newly gen-
erated relation, managing these buffers can be challenging
and often requires techniques like best-fit allocation (Shore
1975). However, this lock-free design is particularly well-
suited for GPUs, and the massive parallel speedup it offers
makes the additional memory cost worthwhile.

Evaluation
We evaluate the performance of FVLOG through three
key comparisons. First, we compare FVLOG with CPU-
based column-oriented Datalog engines, VLog and Nemo, to
demonstrate how GPU-optimized data structures can accel-
erate column-oriented Datalog. Next, we compare FVLOG
with GPU-based row-oriented Datalog prototypes, GPU-
Join and GDLOG, to highlight the superior performance
of column-oriented storage on GPUs. Finally, we validate
FVLOG by running the LUBM scenario in ChaseBench to
demonstrate its applicability in knowledge graph reasoning.

Experimental Environment
All our experiments were conducted on a server equipped
with an AMD EPYC 9534 and an NVIDIA H100. The AMD
EPYC 9534 features 64 cores and 128 threads, supported by
500 GB of memory with a memory bandwidth of 0.43 TB/s.
The NVIDIA H100 GPU includes 16,896 CUDA cores and
80 GB of HBM3 memory, offering up to 3.3 TB/s of mem-
ory bandwidth. The server runs Ubuntu 22.04 and GCC 11.
For VLog, we used Rulewerk, a Java wrapper for VLog
that provides additional language features. For Nemo, we
utilized version 0.5.1. We used Soufflé version 2.4.1, with

multithreading and compiler optimizations maximized. The
RDFox version used was 7.1a, with all CPU threads enabled.
All GPU tools were compiled with NVC++ in NVHPC 24.1.

Table 1: Running time (Second) of Same Generation Query.
FVLOG and GDLOG are executed on NVIDIA H100, Nemo
and soufflé are exectuetd on AMD EPYC 9534 (Genoa).

Dataset Size FVLOG VLog Nemo Soufflé RDFox

vsp finan 552,020 7.52 4403 2172 151.5 257
fc ocean 409,593 0.31 169.7 151.9 13.13 19.2
SF.cedge 223,001 1.80 1121 298.9 56.52 117
fe body 163,734 1.85 173.9 555.4 48.18 126
CA-HepTH 51,971 0.55 313.7 147.7 20.12 20.1
fe sphere 49,152 0.92 582.7 160.8 48.12 63.8

Column-Oriented Datalog Comparison
We first compared the performance of FVLOG with two
CPU-based column-oriented Datalog engines, VLog and
Nemo, using a simple yet representative Same Generation
(SG) Datalog query. This query is a common pattern in Dat-
alog reasoning and demands substantial computation time.

SG(x, y) ← Edge(p, x), Edge(p, y), x ̸= y.
SG(x, y) ← Edge(a, x), SG(a, b), Edge(b, y), x ̸= y.

Results are presented in Table 1. The first column lists the
names of the graphs used in this experiment, all of which
come from the SparseSuite (Davis and Hu 2011) dataset.
The size of each input data is reported in the second col-
umn. These graphs are real-world graphs extracted from di-
verse areas such as road systems, simulations, and SAT solv-
ing. This diversity ensures that our benchmark of the Data-
log engines is unbiased. Columns three through five lists the
running times for the benchmark candidates, while the last
2 columns include the state-of-the-art industrial Datalog en-
gines, Soufflé and RDFox, as a reference.

The results demonstrate the significant performance gains
achieved by running Datalog on GPUs. Under similar stor-
age layouts (all candidates are column-oriented), FVLOG
outperforms VLog and Nemo by a large margin. In all test
cases, FVLOG on the H100 is at least more than 150 times
faster than VLog and Nemo on AMD Genoa. Notably, on the
vsp finan dataset, which is a comparatively large input graph
containing 552,020 edges, FVLOG is 584 times faster than
VLog and 288 times faster than Nemo. Even when compared
to Soufflé and RDFox, which are optimized multicore Dat-
alog engines, FVLOG on the datacenter GPU still shows a
significant performance advantage. On the vsp finan dataset,
FVLOG is 20 times faster than Soufflé, demonstrating the
superior performance in large datasets.

Comparing FVLOG to SOTA Datalog Engines
To validate whether the column-oriented storage layout out-
performs the row-oriented layout on GPUs, we compare
FVLOG with two GPU-based row-oriented Datalog proto-
types, GPUJoin (Shovon et al. 2023) and GDLOG (Sun et al.
2023). We use the transitive closure query mentioned in Sec-
tion as the benchmark and also include Soufflé and RDFox

Table 2: Running time (Second) of Transitive Closure Query
on FVLOG and GDLOG are executed on NVIDIA H100,
soufflé are exectuetd on AMD EPYC 9534.
 indicates a
non-OOM crash observed running GPUJoin.

Dataset FVLOG GDLOG GPUJoin Soufflé RDFox

vsp finan 7.94 21.91 63.89 239.3 269
fe ocean 10.07 23.36
 292.2 507
usroads 9.55 17.53 57.89 243.1 268
com-dblp 3.35 14.30
 233.0 569
Gnutella31 1.2 3.76 7.82 96.82 373
fe sphere 0.53 0.93 1.16 25.02 25.1

as a reference. The running time results are shown in Ta-
ble 2. Due to some bugs in the code, we were unable to
obtain results for GPUJoin on the fe ocean and com-dblp
datasets. The results indicate that all GPU-based engines
show significant performance improvements over the CPU-
based engines. In sum, FVLOG is on average 2.5× faster
than GDLOG and 5.7× faster than GPUJoin.

Our investigation showed that the comparatively low per-
formance of GPUJoin is due to the use of a hash map for
indexing used in this engine. Additionally, GPUJoin’s need
to compress entire rows into single 32-bit integers, restrict-
ing it to 2-arity relations, limits its versatility compared to
FVLOG. FVLOG’s advantage over GDLOG, despite both
using hybrid indexing, lies in its column-oriented storage,
which improves data locality and memory bandwidth uti-
lization. The per-column processing in the DSM model fur-
ther simplifies expensive operations like tuple sorting, en-
abling the use of parallel radix sort instead of merge sort,
which is more efficient on GPUs.

Table 3: TGD reasoning time (seconds) comparison of dif-
ferent Datalog engine on LUBM. FVLOG(C) runs on AMD
EPYC 9534 CPU, FVLOG(G) runs on H100 GPU.

Dataset FVLOG(C) FVLOG(G) Nemo VLog RDFox

010 0.15 0.01 0.65 1.46 0.44
100 0.71 0.03 6.34 5.02 4.98
01K 6.47 0.16 62.32 165.8 56.8

Benchmark Knowledge Representation and Reasoning
After benchmarking the basic Datalog reasoning queries,
we further evaluated the performance of FVLOG on a KRR
workload. We selected tuple-generating dependency (TGD)
queries (excluding existential rules) on the LUBM dataset
from the ChaseBench (Benedikt et al. 2017), a widely used
dataset for evaluating Datalog-based KRR systems. The
queries used in this test include both ST-TGD and T-TGD
and were sourced from the example repository of Nemo
(KBS 2024). The results are presented in Table 3. The first
column lists the names of the sub-datasets used in this test,
with the size of the input data increasing from top to bot-
tom. The third column shows the running time of FVLOG
on a H100 GPU, while the fourth and fifth columns dis-
play the running times of Nemo and VLog on an 64 cores

EPYC 9543. In the last column, we also put the RDFox
industrial row-oriented reasoner as a reference. By com-
paring the running times, we can conclude that combining
the power of GPUs with performance-aware data structures
enables FVLOG to significantly improve Datalog material-
ization times for KRR workloads. The maximum speedup
achieved is close to 300× in the largest input dataset com-
pared to traditional CPU-based systems, Nemo and RD-
Fox. This test, being more copy-intensive than previous join-
heavy benchmarks, reveals that RDFox, even with 64 CPU
cores, does not significantly outperform sequential reason-
ers. We attribute this to the memory-bound nature of the
queries and the lack of data locality in row-oriented storage,
which limits parallel performance.

To further investigate the contributions of performance-
oriented data structures versus the benefits derived from
the incredible memory bandwidth and core size of GPUs,
we also developed a CPU variant of FVLOG. This variant
employs similar data structures but leverages Intel’s latest
oneTBB (Intel 2024) to utilize the multicore resources on
a datacenter CPU instead of GPU threading. The running
times of the CPU version of FVLOG are listed in the second
column of Table 3. The results show that the GPU version
of FVLOG is at least 15× faster than the CPU version. Con-
sidering that the memory bandwidth of the H100 is nearly
7.9× times larger than the EPYC 9534, this indicates that
the workload is memory-bound and that the performance
gains on the GPU are primarily due to its high memory
bandwidth. Additionally, when comparing the running times
of the CPU version of FVLOG with Nemo and VLog, we
observe around a 9.6× speedup on the largest dataset. This
suggests that performance-oriented data structures also con-
tribute to about half of the overall improvement.

Conclusion and Future Work
In this paper, we demonstrate that a column-oriented stor-
age layout is superior to a row-oriented layout on GPUs for
Datalog processing. However, we also admitted that the un-
compressed design of FVLOG and the persistence of surro-
gate columns result in higher memory usage. Despite this,
the trend towards hardware with larger memory capacities
and higher memory bandwidths makes FVLOG well-suited
for future advancements. Looking ahead, another promising
direction is to develop a cluster version of FVLOG to utilize
the fast interconnects and advanced load balancing available
in modern HPC environments. This would help overcome
current memory size limitations and further enhance scala-
bility and performance in distributed settings.

Acknowledgement
This work was funded in part by NSF PPoSS planning and
large grants CCF-2316159 and CCF-2316157. This mate-
rial is based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
N66001-21-C-4023. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
DARPA.

References
Abadi, D. J.; Madden, S. R.; and Hachem, N. 2008. Column-
stores vs. row-stores: how different are they really? In Pro-
ceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, 967–980.
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
databases, volume 8. Addison-Wesley Reading.
Ailamaki, A.; DeWitt, D. J.; Hill, M. D.; and Skounakis, M.
2001. Weaving Relations for Cache Performance. In VLDB,
volume 1, 169–180.
Ailamaki, A.; DeWitt, D. J.; Hill, M. D.; and Wood, D. A.
1999. DBMSs on a modern processor: Where does time
go? In VLDB’99, Proceedings of 25th International Con-
ference on Very Large Data Bases, September 7-10, 1999,
Edinburgh, Scotland, UK, 266–277.
Ajileye, T.; and Motik, B. 2022. Materialisation and data
partitioning algorithms for distributed RDF systems. Jour-
nal of Web Semantics, 73: 100711.
Aref, M.; Kimelfeld, B.; Pasalic, E.; and Vasiloglou, N.
2015a. Extending datalog with analytics in LogicBlox.
In Proceedings of the 9th Alberto Mendelzon International
Workshop on Foundations of Data Management.
Aref, M.; Ten Cate, B.; Green, T. J.; Kimelfeld, B.; Olteanu,
D.; Pasalic, E.; Veldhuizen, T. L.; and Washburn, G. 2015b.
Design and implementation of the LogicBlox system. In
Proceedings of the 2015 ACM SIGMOD International Con-
ference on Management of Data, 1371–1382.
Atserias, A.; Grohe, M.; and Marx, D. 2013. Size bounds
and query plans for relational joins. SIAM Journal on Com-
puting, 42(4): 1737–1767.
Benedikt, M.; Konstantinidis, G.; Mecca, G.; Motik, B.; Pa-
potti, P.; Santoro, D.; and Tsamoura, E. 2017. Benchmark-
ing the chase. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, 37–52.
Boncz, P. A.; Zukowski, M.; and Nes, N. 2005. MonetD-
B/X100: Hyper-Pipelining Query Execution. In Cidr, vol-
ume 5, 225–237.
Bravenboer, M.; and Smaragdakis, Y. 2009. Strictly declara-
tive specification of sophisticated points-to analyses. In Pro-
ceedings of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications,
243–262.
Calimeri, F.; Fuscà, D.; Perri, S.; and Zangari, J. 2017. I-
DLV: the new intelligent grounder of DLV. Intelligenza Ar-
tificiale, 11(1): 5–20.
Ceri, S.; Gottlob, G.; and Lavazza, L. 1986. Translation and
optimization of logic queries: The algebraic approach. In
Proceedings of the 12th International Conference on Very
Large Data Bases, 395–402.
cuCollection. 2024. cuCollections (cuco), an open-source,
header-only library of GPU-accelerated, concurrent data
structures. https://github.com/NVIDIA/cuCollections.
Davis, T. A.; and Hu, Y. 2011. The university of Florida
sparse matrix collection. ACM Trans. Math. Softw., 38(1).

Green, O. 2021. HashGraph—Scalable hash tables using a
sparse graph data structure. ACM Transactions on Parallel
Computing (TOPC), 8(2): 1–17.
Green, O.; McColl, R.; and Bader, D. A. 2012. GPU merge
path: a GPU merging algorithm. In Proceedings of the 26th
ACM international conference on Supercomputing, 331–
340.
Hoder, K.; Bjørner, N.; and De Moura, L. 2011. µZ–an
efficient engine for fixed points with constraints. In Com-
puter Aided Verification: 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings 23, 457–462. Springer.
Horrocks, I.; Patel-Schneider, P. F.; Boley, H.; Tabet, S.;
Grosof, B.; Dean, M.; et al. 2004. SWRL: A semantic web
rule language combining OWL and RuleML. W3C Member
submission, 21(79): 1–31.
Intel. 2024. oneAPI Threading Building Blocks (oneTBB).
https://github.com/oneapi-src/oneTBB.
Ivliev, A.; Ellmauthaler, S.; Gerlach, L.; Marx, M.; Meißner,
M.; Meusel, S.; and Krötzsch, M. 2023. Nemo: First
Glimpse of a New Rule Engine. In Pontelli, E.; Costantini,
S.; Dodaro, C.; Gaggl, S.; Calegari, R.; Garcez, A. D.; Fabi-
ano, F.; Mileo, A.; Russo, A.; and Toni, F., eds., Proceed-
ings 39th International Conference on Logic Programming
(ICLP 2023), volume 385 of EPTCS, 333–335.
JEDEC. 2021. High Bandwidth Memory (HBM)
DRAM. https://www.jedec.org/document search?search
api views fulltext=jesd235.
Jordan, H.; Scholz, B.; and Subotić, P. 2016. Soufflé: On
synthesis of program analyzers. In Computer Aided Verifi-
cation: 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II 28,
422–430. Springer.
Jordan, H.; Subotić, P.; Zhao, D.; and Scholz, B. 2019a.
Brie: A specialized trie for concurrent datalog. In Pro-
ceedings of the 10th International Workshop on Program-
ming Models and Applications for Multicores and Many-
cores, 31–40.
Jordan, H.; Subotić, P.; Zhao, D.; and Scholz, B. 2019b. A
specialized B-tree for concurrent datalog evaluation. In Pro-
ceedings of the 24th symposium on principles and practice
of parallel programming, 327–339.
KBS. 2024. Nemo Examples and Benchmarks.
https://github.com/knowsys/nemo-examples/blob/main/
chasebench/lubm/.
Kolovski, V.; Wu, Z.; and Eadon, G. 2010. Optimiz-
ing enterprise-scale OWL 2 RL reasoning in a relational
database system. In International Semantic Web Conference,
436–452. Springer.
Motik, B.; Nenov, Y.; Piro, R.; and Horrocks, I. 2019. Main-
tenance of datalog materialisations revisited. Artificial Intel-
ligence, 269: 76–136.
Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu, D.
2014. Parallel materialisation of datalog programs in cen-
tralised, main-memory RDF systems. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28.

Nenov, Y.; Piro, R.; Motik, B.; Horrocks, I.; Wu, Z.; and
Banerjee, J. 2015. RDFox: A highly-scalable RDF store. In
The Semantic Web-ISWC 2015: 14th International Semantic
Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part II 14, 3–20. Springer.
Ngo, H. Q.; Ré, C.; and Rudra, A. 2014. Skew strikes back:
new developments in the theory of join algorithms. Acm
Sigmod Record, 42(4): 5–16.
NVIDIA. 2024a. CUDA Best Practice Guide: Coalesced
Access to Global Memory. https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html#coalesced-access-
to-global-memory.
NVIDIA. 2024b. CUDA Programming Guide: Pro-
gramming Models. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#programming-model.
Pennycook, S. J.; Hammond, S. D.; Wright, S. A.; Herdman,
J.; Miller, I.; and Jarvis, S. A. 2013. An investigation of the
performance portability of OpenCL. Journal of Parallel and
Distributed Computing, 73(11): 1439–1450.
Raasveldt, M.; and Mühleisen, H. 2019. Duckdb: an embed-
dable analytical database. In Proceedings of the 2019 Inter-
national Conference on Management of Data, 1981–1984.
Robinson, A. H.; and Cherry, C. 1967. Results of a prototype
television bandwidth compression scheme. Proceedings of
the IEEE, 55(3): 356–364.
Sáenz-Pérez, F.; Caballero, R.; and Garcı́a-Ruiz, Y. 2011.
A deductive database with datalog and sql query languages.
In Programming Languages and Systems: 9th Asian Sympo-
sium, APLAS 2011, Kenting, Taiwan, December 5-7, 2011.
Proceedings 9, 66–73. Springer.
Satish, N.; Kim, C.; Chhugani, J.; Nguyen, A. D.; Lee, V. W.;
Kim, D.; and Dubey, P. 2010. Fast sort on CPUs and GPUs:
a case for bandwidth oblivious SIMD sort. In Proceedings of
the 2010 ACM SIGMOD International Conference on Man-
agement of data, 351–362.
Shore, J. E. 1975. On the external storage fragmentation
produced by first-fit and best-fit allocation strategies. Com-
munications of the ACM, 18(8): 433–440.
Shovon, A. R.; Gilray, T.; Micinski, K.; and Kumar, S. 2023.
Towards iterative relational algebra on the {GPU}. In 2023
USENIX Annual Technical Conference (USENIX ATC 23),
1009–1016.
Stonebraker, M.; Abadi, D. J.; Batkin, A.; Chen, X.; Cherni-
ack, M.; Ferreira, M.; Lau, E.; Lin, A.; Madden, S.; O’Neil,
E.; et al. 2018. C-store: a column-oriented DBMS. In
Making Databases Work: the Pragmatic Wisdom of Michael
Stonebraker, 491–518.
Sun, Y.; Shovon, A. R.; Gilray, T.; Micinski, K.; and Ku-
mar, S. 2023. GDlog: A GPU-Accelerated Deductive En-
gine. arXiv preprint arXiv:2311.02206.
Ullman, J. D. 1983. Principles of database systems. Galgo-
tia publications.
Urbani, J.; Jacobs, C.; and Krötzsch, M. 2016. Column-
oriented datalog materialization for large knowledge graphs.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 30.

Urbani, J.; Kotoulas, S.; Maassen, J.; Van Harmelen, F.; and
Bal, H. 2010. OWL reasoning with WebPIE: calculating the
closure of 100 billion triples. In The Semantic Web: Re-
search and Applications: 7th Extended Semantic Web Con-
ference, ESWC 2010, Heraklion, Crete, Greece, May 30–
June 3, 2010, Proceedings, Part I 7, 213–227. Springer.
Veldhuizen, T. L. 2014. Leapfrog triejoin: A simple, worst-
case optimal join algorithm. In Proc. International Confer-
ence on Database Theory.
Wang, Y. R.; Willsey, M.; and Suciu, D. 2023. Free join:
Unifying worst-case optimal and traditional joins. Proceed-
ings of the ACM on Management of Data, 1(2): 1–23.
Weyl, S.; Fries, J.; Wiederhold, G.; and Germano, F. 1975.
A modular self-describing clinical databank system. Com-
puters and Biomedical Research, 8(3): 279–293.
Whaley, J.; and Lam, M. S. 2004. Cloning-based context-
sensitive pointer alias analysis using binary decision dia-
grams. In Proceedings of the ACM SIGPLAN 2004 con-
ference on Programming Language Design and Implemen-
tation, 131–144.
Zeng, X.; Hui, Y.; Shen, J.; Pavlo, A.; McKinney, W.; and
Zhang, H. 2023. An Empirical Evaluation of Columnar Stor-
age Formats. Proc. VLDB Endow., 17(2): 148–161.
Zukowski, M.; Nes, N.; and Boncz, P. 2008. DSM vs. NSM:
CPU performance tradeoffs in block-oriented query process-
ing. In Proceedings of the 4th international workshop on
Data management on new hardware, 47–54.

